Dimensionality-reduced subspace clustering

نویسندگان

  • Reinhard Heckel
  • Michael Tschannen
  • Helmut Bölcskei
چکیده

Subspace clustering refers to the problem of clustering unlabeled high-dimensional data points into a union of low-dimensional linear subspaces, whose number, orientations, and dimensions are all unknown. In practice one may have access to dimensionality-reduced observations of the data only, resulting, e.g., from undersampling due to complexity and speed constraints on the acquisition device or mechanism. More pertinently, even if the high-dimensional data set is available it is often desirable to first project the data points into a lower-dimensional space and to perform clustering there; this reduces storage requirements and computational cost. The purpose of this paper is to quantify the impact of dimensionality reduction through random projection on the performance of three subspace clustering algorithms, all of which are based on principles from sparse signal recovery. Specifically, we analyze the thresholding based subspace clustering (TSC) algorithm, the sparse subspace clustering (SSC) algorithm, and an orthogonal matching pursuit variant thereof (SSC-OMP). We find, for all three algorithms, that dimensionality reduction down to the order of the subspace dimensions is possible without incurring significant performance degradation. Moreover, these results are order-wise optimal in the sense that reducing the dimensionality further leads to a fundamentally ill-posed clustering problem. Our findings carry over to the noisy case as illustrated through analytical results for TSC and simulations for SSC and SSC-OMP. Extensive experiments on synthetic and real data complement our theoretical findings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Theoretical Analysis of Noisy Sparse Subspace Clustering on Dimensionality-Reduced Data

Subspace clustering is the problem of partitioning unlabeled data points into a number of clusters so that data points within one cluster lie approximately on a low-dimensional linear subspace. In many practical scenarios, the dimensionality of data points to be clustered are compressed due to constraints of measurement, computation or privacy. In this paper, we study the theoretical properties...

متن کامل

Feature Selection based Semi-Supervised Subspace Clustering

Clustering is the process which is used to assign a set of n objects into clusters(groups). Dimensionality reduction techniques help in increasing the accuracy of clustering results by removing redundant and irrelevant dimensions. But, in most of the situations, objects can be related in different ways in different subsets of the dimensions. Dimensionality reduction tends to get rid of such rel...

متن کامل

Identifying Information-Rich Subspace Trends in High-Dimensional Data

Identifying information-rich subsets in high-dimensional spaces and representing them as order revealing patterns (or trends) is an important and challenging research problem in many science and engineering applications. The information quotient of large-scale high-dimensional datasets is significantly reduced by the curse of dimensionality which makes the traditional clustering and association...

متن کامل

Clustering on High Dimensional data Using Locally Linear Embedding (LLE) Techniques

Clustering is the task of grouping a set of objects in such a way that objects in the same group (called cluster) are more similar (in some sense or another) to each other than to those in other groups (clusters). The dimension can be reduced by using some techniques of dimension reduction. Recently new non linear methods introduced for reducing the dimensionality of such data called Locally Li...

متن کامل

A Convex Formulation for Spectral Shrunk Clustering

Spectral clustering is a fundamental technique in the field of data mining and information processing. Most existing spectral clustering algorithms integrate dimensionality reduction into the clustering process assisted by manifold learning in the original space. However, the manifold in reduced-dimensional subspace is likely to exhibit altered properties in contrast with the original space. Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1507.07105  شماره 

صفحات  -

تاریخ انتشار 2015